Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1722: 464860, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593521

RESUMO

Thanks to the Cassini-Huygens space mission between 2004 and 2017, a lot was learned about Titan, the biggest satellite of Saturn, and its intriguing atmosphere, surface, and organic chemistry complexity. However, key questions about the potential for the atmosphere and surface chemistry to produce organic molecules of direct interest for prebiotic chemistry and life did not find an answer. Due to Titan potential as a habitable world, NASA selected the Dragonfly space mission to be launched in 2027 to Titan's surface and explore the Shangri-La surface region for minimum 3 years. One of the main goals of this mission will be to understand the past and actual abundant prebiotic chemistry on Titan, especially using the Dragonfly Mass Spectrometer (DraMS). Two recently used sample pre-treatments for Gas Chromatography - Mass Spectrometry (GC-MS mode of DraMS) analyses are planned prior analysis to extract refractory organic molecules of interest for prebiotic chemistry and astrobiology. The dimethylformamide dimethylacetal (DMF-DMA) derivatization reaction offers undoubtedly an opportunity to detect biosignatures by volatilizing refractory biological or prebiotic molecules and conserving the chiral carbons' conformation while an enantiomeric excess indicates a chemical feature induced primarily by life (and may be aided on the primitive systems by light polarization). The goal of this study is to investigate the ageing of DMF-DMA in DraMS (and likely MOMA) capsules prior to in situ analysis on Titan (or Mars). The main results highlighted by our work on DMF-DMA are first its satisfactory stability for space requirements through time (no significant degradation over a year of storage and less than 30 % of lost under thermal stress) to a wide range of temperature (0 °C to 250 °C), or the presence of water and oxidants during the derivatization reaction (between 0 and 10 % of DMF-DMA degradation). Moreover, this reagent derivatized very well amines and carboxylic acids in high or trace amounts (ppt to hundreds of ppm), conserving their molecular conformation during the heat at 145 °C for 3 min (0 to 4% in the enantiomeric form change).


Assuntos
Saturno , Estereoisomerismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Dimetilformamida/química , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Voo Espacial
2.
J Chromatogr A ; 1709: 464388, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37742456

RESUMO

Among future space missions, national aeronautics and space administration (NASA) selected two of them to analyze the diversity in organic content within Martian and Titan soil samples using a gas chromatograph - mass spectrometer (GC-MS) instrument. The Dragonfly space mission is planned to be launched in 2027 to Titan's surface and explore the Shangri-La surface region for years. One of the main goals of this mission is to understand the past and actual abundant prebiotic chemistry on Titan, which is not well characterized yet. The ExoMars space mission is planned to be launched in 2028 to Mars' surface and explore the Oxia Planum and Mawrth Vallis region for years. The main objectives focus on the exploration of the subsurface soil samples, potentially richer in organics, that might be relevant for the search of past life traces on Mars where irradiation does not impact the matrices and organics. One recently used sample pre-treatment for gas chromatography - mass spectrometry analysis is planned on both space missions to detect refractory organic molecules of interest for astrobiology. This pre-treatment is called derivatization and uses a chemical reagent - called dimethylformamide dimethyl acetal (DMF-DMA) - to sublimate organic compounds keeping them safe from thermal degradation and conserving the chirality of the molecules extracted from Titan or Mars' matrices. Indeed, the detection of building blocks of life or enantiomeric excess of some organics (e.g. amino acids) after DMF-DMA pre-treatment and GC-MS analyses would be both bioindicators. The main results highlighted by our work on DMF-DMA and Tenax®TA interaction and efficiency to detect organic compounds at ppb levels in a fast and single preparation are first that Tenax®TA did not show the onset of degradation until after 150 experiments - a 120 h at 300 °C experiment - which greatly exceeds the experimental lifetimes for the DraMS and GC-space in situ investigations. Tenax®TA polymer and DMF-DMA produce many by-products (about 70 and 46, respectively, depending on the activation temperature). Further, the interaction between the two leads to the production of 22 additional by-products from DMF-DMA degradation, but these listed by-products do not prevent the detection of trace-level organic molecules after their efficient derivatization and volatilization by DMF-DMA in the oven ahead the GC-MS trap and column.

3.
Anal Chim Acta ; 1266: 341270, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37244655

RESUMO

For gas chromatography - mass spectrometry (GC-MS) analyses performed in situ, pH and salts (e.g., chlorides, sulfates) may enhance or inhibit the detection of targeted molecules of interest for astrobiology (e.g. amino acids, fatty acids, nucleobases). Obviously, salts influence the ionic strength of the solutions, the pH value, and the salting effect. But the presence of salts may also produce complexes or mask ions in the sample (masking effect on hydroxide ion, ammonia, etc.). For future space missions, wet chemistry will be conducted before GC-MS analyses to detect the full organic content of a sample. The defined organic targets for space GC-MS instrument requirements are generally strongly polar or refractory organic compounds, such as amino acids playing a role in the protein production and metabolism regulations for life on Earth, nucleobases essential for DNA and RNA formation and mutation, and fatty acids that composed most of the eukaryote and prokaryote membranes on Earth and resist to environmental stress long enough to still be observed on Mars or ocean worlds in geological well-preserved records. The wet-chemistry chemical treatment consists of reacting an organic reagent with the sample to extract and volatilize polar or refractory organic molecules (i.e. dimethylformamide dimethyl acetal (DMF-DMA) in this study). DMF-DMA derivatizes functional groups with labile H in organics, without modifying their chiral conformation. The influence of pH and salt concentration of extraterrestrial materials on the DMF-DMA derivatization remains understudied. In this research, we studied the influence of different salts and pHs on the derivatization of organic molecules of astrobiological interest with DMF-DMA, such as amino acids, carboxylic acids, and nucleobases. Results show that salts and pH influence the derivatization yield, and that their effect depend on the nature of the organics and the salts studied. Second, monovalent salts lead to a higher or similar organic recovery compared to divalent salts regardless of pH below 8. However, a pH above 8 inhibits the DMF-DMA derivatization influencing the carboxylic acid function to become an anionic group without labile H. Overall, considering the negative effect of the salts on the detection of organic molecules, future space missions may have to consider a desalting step prior to derivatization and GC-MS analyses.


Assuntos
Dimetilformamida , Meio Ambiente Extraterreno , Meio Ambiente Extraterreno/química , Sais , Aminoácidos/análise , Ácidos Carboxílicos , Ácidos Graxos
4.
Talanta ; 257: 124283, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36870123

RESUMO

One of the main objectives of present and future space exploration missions dedicated to astrobiology is the detection of organic molecules of interest for life (e.g. amino and fatty acids). With this aim, a sample preparation and a gas chromatograph (connected to a mass spectrometer) are generally used. To date, tetramethylammonium hydroxide (TMAH) has been the first and only thermochemolysis reagent to be used for in situ sample preparation and chemical analysis of planetary environments. Although TMAH is widely used in terrestrial laboratories, numerous applications also leverage other thermochemolysis reagents that may be more relevant than TMAH to meet both scientific and technical objectives of space instrumentation. The present study compares the performance of tetramethylammonium hydroxide (TMAH), trimethylsulfonium hydroxide (TMSH), and trimethylphenylammonium hydroxide (TMPAH) reagents on molecules of interest to astrobiology. The study focuses on the analyses of 13 carboxylic acids (C7-C30), 17 proteinic amino acids, and the 5 nucleobases. Here we report the derivatization yield without stirring or adding solvents, the detection sensitivity with mass spectrometry, and the nature of the degradation products from the reagents produced during pyrolysis. We conclude that TMSH and TMAH are the best reagents for analyzing carboxylic acids and nucleobases. Amino acids are not relevant targets for a thermochemolysis over 300 °C as they are degraded and showed high limits of detection. As TMAH, and probably TMSH, meet the space instrumentation requirements, this study informs sample treatment approaches prior to GC-MS analysis in in situ space studies. The thermochemolysis reaction using TMAH or TMSH is also recommended for space return missions to extract organics from a macromolecular matrix, derivatize polar or refractory organic targets, and volatilize with the fewest organic degradations.

5.
Talanta ; 204: 802-811, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31357367

RESUMO

Thermochemolysis of seven nucleobases-adenine, thymine, uracil, cytosine, guanine, xanthine, and hypoxanthine-in tetramethylammonium hydroxide (TMAH) was studied individually by pyrolysis gas chromatography mass spectrometry in the frame of the Mars surface exploration. The analyses were performed under conditions relevant to the Sample Analysis at Mars (SAM) instrument of the Mars Curiosity Rover and the Mars Organic Molecule Analyzer (MOMA) instrument of the ExoMars Rover. The thermochemolysis products of each nucleobase were identified and the reaction mechanisms studied. The thermochemolysis temperature was optimized and the limit of detection and quantification of each nucleobase were also investigated. Results indicate that 600°C is the optimal thermochemolysis temperature for all seven nucleobases. The methylated products trimethyl-adenine, 1, 3-dimethyl-thymine, 1, 3-dimethyl-uracil, trimethyl-cytosine, 1, 3, 7-trimethyl-xanthine (caffeine), and dimethyl-hypoxanthine, respectively, are the most stable forms of adenine, thymine, uracil, cytosine, guanine, and xanthine, and hypoxanthine in TMAH solutions. The limits of detection for adenine, thymine, and uracil were 0.075 nmol; the limits of detection for guanine, cytosine, and hypoxanthine were higher, at 0.40, 0.55, and 0.75 nmol, respectively. These experiments allowed to well constrain the analytical capabilities of the thermochemolysis experiments that will be performed on Mars to detect nucleobases.


Assuntos
Purinas/análise , Pirimidinonas/análise , Cromatografia Gasosa-Espectrometria de Massas , Temperatura Alta , Limite de Detecção , Marte , Purinas/química , Pirimidinonas/química , Pirólise , Voo Espacial/instrumentação
6.
J Geophys Res Planets ; 120(3): 495-514, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26690960

RESUMO

The Sample Analysis at Mars (SAM) instrument on board the Mars Science Laboratory Curiosity rover is designed to conduct inorganic and organic chemical analyses of the atmosphere and the surface regolith and rocks to help evaluate the past and present habitability potential of Mars at Gale Crater. Central to this task is the development of an inventory of any organic molecules present to elucidate processes associated with their origin, diagenesis, concentration, and long-term preservation. This will guide the future search for biosignatures. Here we report the definitive identification of chlorobenzene (150-300 parts per billion by weight (ppbw)) and C2 to C4 dichloroalkanes (up to 70 ppbw) with the SAM gas chromatograph mass spectrometer (GCMS) and detection of chlorobenzene in the direct evolved gas analysis (EGA) mode, in multiple portions of the fines from the Cumberland drill hole in the Sheepbed mudstone at Yellowknife Bay. When combined with GCMS and EGA data from multiple scooped and drilled samples, blank runs, and supporting laboratory analog studies, the elevated levels of chlorobenzene and the dichloroalkanes cannot be solely explained by instrument background sources known to be present in SAM. We conclude that these chlorinated hydrocarbons are the reaction products of Martian chlorine and organic carbon derived from Martian sources (e.g., igneous, hydrothermal, atmospheric, or biological) or exogenous sources such as meteorites, comets, or interplanetary dust particles. KEY POINTS: First in situ evidence of nonterrestrial organics in Martian surface sediments Chlorinated hydrocarbons identified in the Sheepbed mudstone by SAM Organics preserved in sample exposed to ionizing radiation and oxidative condition.

7.
Science ; 347(6220): 412-4, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25515119

RESUMO

The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

8.
Science ; 343(6169): 1245267, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24324276

RESUMO

H2O, CO2, SO2, O2, H2, H2S, HCl, chlorinated hydrocarbons, NO, and other trace gases were evolved during pyrolysis of two mudstone samples acquired by the Curiosity rover at Yellowknife Bay within Gale crater, Mars. H2O/OH-bearing phases included 2:1 phyllosilicate(s), bassanite, akaganeite, and amorphous materials. Thermal decomposition of carbonates and combustion of organic materials are candidate sources for the CO2. Concurrent evolution of O2 and chlorinated hydrocarbons suggests the presence of oxychlorine phase(s). Sulfides are likely sources for sulfur-bearing species. Higher abundances of chlorinated hydrocarbons in the mudstone compared with Rocknest windblown materials previously analyzed by Curiosity suggest that indigenous martian or meteoritic organic carbon sources may be preserved in the mudstone; however, the carbon source for the chlorinated hydrocarbons is not definitively of martian origin.


Assuntos
Exobiologia , Meio Ambiente Extraterreno/química , Hidrocarbonetos Clorados/análise , Marte , Compostos Orgânicos Voláteis/análise , Baías , Dióxido de Carbono/análise , Dióxido de Carbono/química , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Oxigênio/análise , Oxigênio/química , Sulfetos/análise , Sulfetos/química , Água/análise , Água/química
9.
Science ; 341(6153): 1238937, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072926

RESUMO

Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity's Sample Analysis at Mars instrument suite. H2O, SO2, CO2, and O2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H2O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO2. Evolved O2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.

10.
Science ; 341(6153): 1239505, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-24072928

RESUMO

The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.

11.
J Chromatogr A ; 1306: 59-71, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23921265

RESUMO

The performances of several commercial chiral capillary columns have been evaluated with the aim of determining the one most suitable for enantiomeric separation in a gas chromatograph onboard a space probe. We compared the GC-MS response of three capillary columns coated with different chiral stationary phases (CSP) using volatile chiral organic molecules which are potential markers of a prebiotic organic chemistry. The three different chiral capillary columns are Chirasil-Val, with an amino acid derivative CSP, ChiralDex-ß-PM, with a CSP composed of dissolved permethylated ß-cyclodextrins in polysiloxane, and Chirasil-Dex, with a CSP made of modified cyclodextrins chemically bonded to the polysiloxane backbone. Both kinetics and thermodynamics studies have been carried out to evaluate the chiral recognition potential in these different types of columns. The thermodynamic parameters also allow a better understanding of the driving forces affecting the retention and separation of the enantiomers. The Chirasil-Dex-CSP displays the best characteristics for an optimal resolution of the chiral compounds, without preliminary derivatization. This CSP had been chosen to be the only chiral column in the Sample Analysis at Mars (SAM) experiment onboard the current Mars Science Laboratory (MSL) mission, and is also part of the Mars Organic Molecules Analyzer (MOMA) gas chromatograph onboard the next Martian mission ExoMars. The use of this column could also be extended to all space missions aimed at studying chirality in space.


Assuntos
Exobiologia/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/química , Exobiologia/instrumentação , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Cinética , Marte , Estereoisomerismo , Termodinâmica
12.
J Chromatogr A ; 1217(5): 731-40, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20036768

RESUMO

Within the context of the future space missions to Mars (MSL 2011 and Exomars 2016), which aim at searching for traces of life at the surface, the detection and quantitation of enantiomeric organic molecules is of major importance. In this work, we have developed and optimized a method to derivatize and analyze chiral organic molecules suitable for space experiments, using N,N-dimethylformamide dimethylacetal (DMF-DMA) as the derivatization agent. The temperature, duration of the derivatization reaction, and chromatographic separation parameters have been optimized to meet instrument design constraints imposed upon space experiment devices. This work demonstrates that, in addition to its intrinsic qualities, such as production of light-weight derivatives and a great resistance to drastic operating conditions, DMF-DMA facilitates simple and fast derivatization of organic compounds (three minutes at 140 degrees C in a single-step) that is suitable for an in situ analysis in space. By using DMF-DMA as the derivatization agent, we have successfully identified 19 of the 20 proteinic amino acids and been able to enantiomerically separate ten of the potential 19 (glycine being non-chiral). Additionally, we have minimized the percentage of racemized amino acid compounds produced by optimizing the conditions of the derivatization reaction itself. Quantitative linearity studies and the determination of the limit of detection show that the proposed method is also suitable for the quantitative determination of both enantiomeric forms of most of the tested amino acids, as limits of detection obtained are lower than the ppb level of organic molecules already detected in Martian meteorites.


Assuntos
Aminoácidos/isolamento & purificação , Dimetilformamida/análogos & derivados , Exobiologia/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Dimetilformamida/química , Meio Ambiente Extraterreno , Análise dos Mínimos Quadrados , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA